Janus kinase 2 modulates the lipid-removing but not protein-stabilizing interactions of amphipathic helices with ABCA1.

نویسندگان

  • Chongren Tang
  • Ashley M Vaughan
  • G M Anantharamaiah
  • John F Oram
چکیده

ABCA1 mediates the transport of cellular cholesterol and phospholipids to HDL apolipoproteins. Apolipoprotein A-I (apoA-I) interactions with ABCA1-expressing cells elicit several responses, including removing cellular lipids, stabilizing ABCA1 protein, and activating Janus kinase 2 (JAK2). Here, we used synthetic apolipoprotein-mimetic peptides to characterize the relationship between these responses. Peptides containing one amphipathic helix of L- or D-amino acids (2F, D-2F, or 4F) and a peptide containing two helices (37pA) all promoted ABCA1-dependent cholesterol efflux, competed for apoA-I binding to ABCA1-expressing cells, blocked covalent cross-linking of apoA-I to ABCA1, and inhibited ABCA1 degradation. 37pA was cross-linked to ABCA1, confirming the direct binding of amphipathic helices to ABCA1. 2F, 4F, 37pA, and D-37pA all stimulated JAK2 autophosphorylation. Inhibition of JAK2 greatly reduced peptide-mediated cholesterol efflux, peptide binding to ABCA1-expressing cells, and peptide cross-linking to ABCA1, indicating that these processes require an active JAK2. In contrast, apoA-I and peptides stabilized ABCA1 protein even in the absence of an active JAK2, implying that this process is independent of JAK2 and lipid efflux-promoting binding of amphipathic helices to ABCA1. These findings show that amphipathic helices coordinate the activity of ABCA1 by several distinct mechanisms that are likely to involve different cell surface binding sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Helical domains that mediate lipid solubilization and ABCA1-specific cholesterol efflux in apolipoproteins C-I and A-II.

Many of the apolipoproteins in HDL can elicit cholesterol efflux via ABCA1, a critical initial step in HDL formation. Recent work has indicated that omnipresent amphipathic helices play a critical role, and these have been studied intensively in the most common HDL protein, apolipoprotein (apo)A-I. However, little information exists about helical domain arrangement in other apolipoproteins. We ...

متن کامل

ABCA1 and amphipathic apolipoproteins form high-affinity molecular complexes required for cholesterol efflux.

Apolipoproteins, such as apolipoprotein A-I (apoA-I), can stimulate cholesterol efflux from cells expressing the ATP binding cassette transporter A1 (ABCA1). The nature of the molecular interaction between these cholesterol acceptors and ABCA1 is controversial, and models suggesting a direct protein-protein interaction or indirect association have been proposed. To explore this issue, we perfor...

متن کامل

Unsaturated fatty acids phosphorylate and destabilize ABCA1 through a protein kinase C delta pathway.

Abnormal HDL metabolism among patients with diabetes and insulin resistance may contribute to their increased risk of atherosclerosis. ABCA1 mediates the transport of cholesterol and phospholipids from cells to HDL apolipoproteins and thus modulates HDL levels and atherogenesis. Unsaturated fatty acids, which are increased in diabetes, impair the ABCA1 pathway in cultured cells by destabilizing...

متن کامل

Both STAT3 activation and cholesterol efflux contribute to the anti-inflammatory effect of apoA-I/ABCA1 interaction in macrophages.

ABCA1 exports excess cholesterol from cells to apoA-I and is essential for HDL synthesis. Genetic studies have shown that ABCA1 protects against cardiovascular disease. We have previously shown that the interaction of apoA-I with ABCA1 activates signaling molecule Janus kinase 2 (JAK2), which optimizes the cholesterol efflux activity of ABCA1. ABCA1-mediated activation of JAK2 also activates si...

متن کامل

A preliminary study of the association between the ABCA1 gene promoter DNA methylation and coronary artery disease risk

Coronary artery disease (CAD) is a common health problem in Iranian population. ATP binding cassette transporter A1 (ABCA1) plays central role in the efflux of the cholesterol from peripheral tissues back to liver. Inactivation of ABCA1 by epigenetic change such as DNA methylation may contribute to the development of CAD. The present study investigated the association between promoter DNA methy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of lipid research

دوره 47 1  شماره 

صفحات  -

تاریخ انتشار 2006